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Polymerization Kinetics in Some One-Dimensional Systems 
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S ummar 2 

Kinetic equations for the irreversible chemical reaction 
between adjacent units in one-dimensional systems are deri- 
ved. Solutions, describing the influence of isolation and 
diffusion on the kinetics of reaction, are obtained~ This 
solutions are compared with the results of corresponding 
Monte Carlo experiments, 

Introduction 

Present article concerns with the following peculiarities 
of the reaction in the condensed phase (1,2) : 

I. some unreacted units, when surrounded by non-reaction- 
able or reacted ones, take no part in reaction (isolation 
of units) ; 

2. the rate of mixing up of the unreacted units is not 
fast enough for reaction to progress effectively (diffusion- 
ally controlled reaction). 

The study of simple one-dimensional models enables us to 
look clear at separated and combined influence of diffusion 
and isolation on the kinetics of the reaction. 

I. Reaction between fixed particles 

We consider the following reaction model: A units are 
reacting with adjacent B Units only, both transforming into 
C units; the reaction is irreversible and of the second 
order; initial distribution of unreacted units A and B and 
"holes" 0 is random; R is the initial ratio of components; 
G is a portion of units A, B and C in the infinite one- 
dimensional system. 

"Isolation" corresponds to different situations when 
reactionable units A and B are surrounded by reacted diads 
CC, holes 0 or by the nearest neighbours of the same name. 
For instance in following part of the system 

...C ~ C C 0 B'C C 0 ~ 0 B A B 0 ~ A B B'B~ 

isolated units are marked~ Using the method of multiplets (3) 
or more formalistic method based on the theory of stochastic 
processes (4) one can obtain the infinite set of exact kine- 
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tic equations, describing the reaction in the system under 
consideration: 

A = - 2-AB 

AB = - AB - ABA - BAB 1 ~ 

ABA = - 2-ABA - 2-BABA 

o e ~ , o  

(here and after the rate constant ol the reaction assumed 
to be equal to I). 

Symbols A, AB, ABA, BAB and BABA denote the probabili- 
ties of finding corresponding unit, diad, triad etc in the 
system. In order to solve this equations one have to trun- 
cate the infinite set I ~ with the use of some additional 
condition (5), for example approximation of superpositional 
type for joint probabilities: 

ABA = AB.BA/B and BAB = BA.AB/A 2 ~ 

Using this conditions 2 ~ we have obtained an analytical so- 
lution of the form: 

K = (x2-s2) -1/2. ((1-s2) I/2 + ~,log((x+(x2-s2)1/2))) 3 ~ 
(1+(1 -s2) 1/2) 

x = f-(1 + s) - s ; s = (R-1)/(R+I) 

(here f is a fraction of unreacted A-units, s is a stoi- 
chiometric index (4)). 

At this point, we have to note that conditions 2 ~ are 
quite exact. Indeed, it is easy to see that all the equati- 
ons I ~ are simultaneously satisfied, provided all the joint 
probabilities of higher order simultaneously obey the con- 
ditions of the superpositional type: 

ABA...ABj+ I = ABA...Aj-BA...ABj/BA...Aj_ I 

j = 2,3,4,... 

Flory looked into the kinetics of the reaction between 
adjacent units in an one-dimensional slngle-component system 
without holes (6). He calculated the fraction of units ~hich 
remain unreacted untill the end of the reaction: 

f~ = e -2 = 0.1353... 

Using the method of multiplets Cohen and Reiss had derived 
and solved the set of kinetic equations describing the reac- 
tion in this simplest system (7). They had obtained the 
exact analytical solution: 

f(t) = exp(-2- (l-e-t)) 4 ~ 

In order to ascertain wheather or not the kinetics of the 
reaction in the system considered differs sufficiently from 

t! I! the ideal second order kinetics we have plotted kinetic 
curves of effective reaction rate K = AB/(A-B) vs conver- 
sion of A-units (Fiq~ 
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Figure I. The dependence 
of effective second order 
reaction rate constant K 
on the conversion 1-f 
of A-units. G is the 
fraction of units, R is 
the ratio of components 
A and B, s is the stoi- 
chiometric index in the 
system of fixed units. 

Striking variability of the kinetic curves reflects non- 
trivial influence of units isolation on the kinetics of ir- 
reversible chemical reaction. Depending on the values of G 
and R (or s) the shapes of the curves show on apparent 
changes of reaction mechanism. Indeed it is bimolecular one 
during all the reaction. 

2. Reaction i n one-dimensional system of jumpin~ units. 

No isolation 

We consider the model of reaction between adjacent units 
in single-component one-dimensional system with randomly dis- 
tributed holes, in addition we allow unreacted units to jump 
to adjacent unoccupied sites with the rate constant P. Once 
reacted the units leave the system and isolation does not 
appear in this case. Treating this process in quite analogous 
manner as it was described above we have obtained following 
infinite set of exact kinetic equations: 

A = -2.AA 

AA = - AA - 2.AAA + 2P-(AOA - AAO) 5 ~ 

A0 = - AAO + P'(AO0 - OAO + AA0 - AOA) 

O0 = 2P" (OAO - AO0) 

Using approximations of superpositional type for triads 
AAA, AOA, AAO, AO0 and OAO we have solved this equations n~ne- 
rically. The results are shown in fig. 2. 

In fact the solutions in two opposite limits of very 
fast (P~I) and very slow (P<<I) diffusion are exact. 
On one hand, when diffusion is negligible (P~O) the solution 
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Figure 2. Calculated 
kinetic curves of re- 
action in the systems 
with different diffu- 
sion rates P. 

of equations 5 ~ coincides with the exact analytical solu- 
tion 4 ~ On the other hand, when the units are mixed up/fast 
the distribution of units and holes in the system remains 
almost absolutely random, and the superpositional approxima- 
tions of any order are almost exact. In this limit K=I. 

It is interesting to compare the numerical solutions of 
the set 5 ~ with the results of corresponding Monte Carlo ex- 
periments for intermediate range of P values. The Monte Carlo 
points and the numerical solutions coincide within the limits 
of the statistical errors, averaged over 10 realizations con- 
sisting of 100 units each. Thus, the kinetics of the reaction 
in the system considered is described quantitatively through 
all the reaction (both kinetically and diffusionally control- 
led ones). 

Diffusion with isolation 

We consider now the most complicated case: once reacted 
the units remain fixed in their sites for all time and con- 
strain the unreacted units from diffusion. The set of kine- 
tic equations in this case remains the same 5 ~ . We used the 
approximations of superpositional type to solve these equa- 
tions. One of the results is shown in fig. 3 along with the 
results of corresponding Monte Carlo experiments, absolutely 
exact solution in the absence of diffusion and "almost exact" 
solution for diffusion without isolation. The solutions ob- 
tained in this section reflects qualitatively (not exactly) 
combined influence of diffusion and isolation on the reaction 
kinetics. 

We are interested if the fraction of unreacted units f~ 
does depend on G and P when the reaction is completed? The 
results of MC experiments give us the possibility to make the 
following conclusion: f~ is independent of G and P, provi- 
ded the initial distribution of units is random (f,=.135-.002 
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Figure 3. The relative 
effect of: 
( .... ) isolation, 
( .......... ~ diffusion 
and combined effect of 
diffusion and isolation 
(- ) of units on 
the reaction kinetics. 

and is consisted with the exact value f_ =e-2=0.1353... ob- 
tained for the simplest Flory system G=I, P=O). However from 
tab. 1 one can see that the numerical value of f~ depends at 
least on G. Our experience makes us sure that there may be 
the only reason of such discreapancy: the superpositional 
conditions are not justified on isolation increase. In this 
case diffusion is unable to restore the random units distri- 
bution broken by progressing reaction. 

Table I. Final fraction of unreacted (isolated) units f~ 

G 0.2 0.2 0.5 0.5 
P 0.1 1 ~0 0,I 1.0 

~'[ont e Carlo 0.135 0,134 0.135 0.136 
Kinetic equations 0.37 O. 38 0.20 O. 22 

Conclusion 

The performed study of simple one-dimensional models 
enables us to look clear at separated and combined influence 
of diffusion and isolation of units on irreversible chemical 
reaction kinetics. The method used may be developed in order 
to describe the parallel kinetics of chemical reaction and 
structural recovery in the dense polymer networks (8). 
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